PRODUCT DISTRIBUTION LAGRANGIANS

David H. Wolpert

NASA Ames Research Center http://ic.arc.nasa.gov/~dhw/

August, 2003

CENTRAL CONCEPT

APPLICATION DOMAINS

Optimization Distributed Control

Game theory

Sampling of probability distributions

Corrections to COIN algorithms

MAXENT LAGRANGIANS

Mathematical underpinnings

(Grand) Canonical ensemble, etc.

Team games / Mean-field theory

Maxent game theory

CENTRAL CONCEPT

• A space z □ □

z can be anything:

uncountable, symbolic, time-extended, states of human beings, states of computers, mixtures of any of these, etc.

• N Spaces $\{x_i \square \square\}$:

 $x \square \square$ are the joint elements, $x_{(i)}$ is all $\{x_{j \neq i}\}$

Need a rule $\Box(x) = z$ to match any sample $x \Box \Box$ with a $z \Box \Box$:

(Need not be invertible)

This is a *semi-coordinate* system

• Any distribution P(x) induces a P(z):

$$P(z) = P(\underline{\Gamma}(x) = z) = \underline{\Gamma}dx P(x)\underline{\Gamma}(x)\underline{\Gamma}(x)$$

But we don't have P(x); we have N distributions $q_i(x_i \square x_i)$.

Need a rule $\{q_i(x_i)\} \square P(x)$ to get P(z)

• For simplicity, choose the product distribution rule:

$$P(x) = \prod_{i} q_i(x_i)$$

$$\begin{array}{c|c} q_1(x_1) \ \square \ q_2(x_2) \ \square \dots & \cdots \ \square \ q_N(x_N) \\ & & & & \\ P(x) & & & \\ & & & & \\ P(z) \ = \ P(\square(x) = z) \end{array}$$

Need a rule to set $q = (q_1, q_2, ..., q_N)$

- I) Each q_i directly optimizes its own criterion.
- II) q induces an optimal P(z). E.g.,
 - i) Best approximate a provided $P^*(z)$
 - ii) Best approximate a sample of $P^*(z)$

So each optimal q_i is the vector minimizing the Lagrangian

$$L_{\rm i}({\bf q_i, q_{(i)}})$$

subject to qi being a probability

- q_i may depend on $q_{(i)}$ but x_i and $x_{(i)}$ are independent
- · More semi-coordinates allows more accurate approximation

TAKE-HOME MESSAGE:

Whenever you encounter a distribution P(z) that is difficult to deal with, try expanding it as a product distribution

 $\prod_i q_i(x_i)$

with associated Lagrangians.

OPTIMIZATION

- Core issue: how to use information at one point to choose a next sample point.
- NP hard is when such information is useless.

• Why optimization (and therefore control, highdimension integration, etc.) can be hard

- Best case is continuous domains, where smoothness can be exploited if you aren't trapped in a vertex
- So: Distort problem so solution is off the border, and then weaken the distortion.

- ☐ distorted problem solution
- o original problem solution
 - Example: Interior point methods

• Can do this for discrete domains by using a probability distribution as the continuous variable

- 1) For each successive distorted problem, exploit smoothness to search over P(x)'s
 - Gradient descent, Newton's method ... even simulated annealing.

Gradient descent to optimize <u>categorical</u> variables subject to <u>categorical</u> constraints

2) Example: To minimize G(z), find the P(x) minimizing

$$L(P) = [E_P(G([(x))) - S(P)]$$

- S(P) has infinite derivative at the simplex border
- Larger [] = less distortion anneal

$$E_{\mathbf{p}}(\mathbf{G}) = \left[\mathbf{d}x \ \mathbf{G}(\left[(x) \right]) \mathbf{P}(x) \text{ is linear in P(x). Therefore,} \right]$$

$$\mathbf{f} - \mathbf{S}(\mathbf{P}) \text{ is convex, so is } \mathbf{L}(\mathbf{P})$$

$$\mathbf{So} \ \mathbf{L}(\mathbf{P}) \text{ has a unique minimum, off the border}$$

$$- \mathbf{E}_{\mathbf{P}}(\mathbf{G}(\left[(x) \right]))$$

$$- \mathbf{L}(\mathbf{P}) \text{ (high } \left[(x) \right])$$

$$- \mathbf{L}(\mathbf{P}) \text{ (low } \left[(x) \right])$$

Example: Take S(P) to be the Shannon entropy,

$$S(P) = - \left[dx \ P(x) \ln[P(x)] \right]$$

- As required, -S(P) is convex, with infinite derivative at the simplex border
- L(P) is minimized by the *Boltzmann distribution*,

$$P(x) = exp(-\Box G(x))$$

Simulated annealing:

- 1) At each [], perform an associated Metropolis-Hastings random walk
- 2) That walk eventually gives a random sample of $P_{\Pi}(x)$
- 3) When you think it has, increase [], and repeat

So when you get to high \square , your sample is likely to be close to argmin $G[(\square(x))]$

... inefficient

P(x) lives in a *huge* space. How parameterize it?

With a distributed parameterization, parameters can be estimated separately from each other. So optimization

- i) can be parallelized,
- ii) can be used for distributed control,

So . . .

Use a product distribution: $P(x) = q(x) = \prod_i q_i(x_i)$

Downside:

- $L(q) = \prod_{q} E_q(G(\prod(x))) S(q)$ = $\prod_{q} S(\prod(x)) \prod_{q} q_i(x) - S(q)$
- ullet L is linear in P but multilinear in the $\mathbf{q_i}$
- So even for convex S(q), L(q) need not be convex:

At any \Box , L(q) can have multiple minima

• Even for entropic S,

At any \square , q(x) can have multiple peaks

(just like multiple Nash equilibria . . .)

Intuition:

L convex over \square^+ , the simplex of all distributions

L not convex over \square , the submanifold through \square ⁺ of all product distributions

□+:

Solutions: 1) If $S(q) = \prod_i S_i(q_i)$, then for fixed q(i), $L_i(q) = is$ convex in q_i 2) Anneal \prod : 3) Change coordinates:

DISTRIBUTED CONTROL

(Multi-agent systems)

- 1) The challenge:
 - $i) \quad z = (z_1, z_2)$
 - ii) G a function of both zi
 - iii) Can only control z_1 ...
- 2) So choose z_1 to maximize $E(G \mid z_1)$, i.e.,

3) Want each control variable $\square z_1$ set autonomously

1) "Just" optimization;

Basis of conventional control theory

- 2) For our desired distributed solution, use a product distribution approach instead of control theory?
- 3) Two major problems:
 - i) In naive prod. distribution optimization you set all \boldsymbol{q}_i here you can't set \boldsymbol{q}_2
 - ii) P(z) is explicitly not a product distribution.

Solution:

Puppet master moves sticks q_i , which move strings $P(z_2 | z_1)$, which move puppet, expected G

Formally,

1) x =the control variables, z_1

So
$$E_{q}(G \mid x) = \int dx \ q(x) \ E(G \mid z_{1} = x)$$

$$= \int dx_{i} \ q(x) \int d(z_{2})G(z_{1}, z_{2})P(z_{2} \mid z_{1} = x)$$

$$= \int dx_{i} \prod_{i} q_{i}(x_{i}) \int d(z_{2}) G(z_{1}, z_{2})P(z_{2} \mid z_{1} = x)$$

2) Get off the border: $L(q) = \prod E_q(G \mid x) - S(q)$

Overview:

z₁ minimizing Expected G hard to find.So use a product distribution, and get off the border:

Find q(x) minimizing L(q) (easy), and then raise \square .

NONCOOPERATIVE GAME THEORY

- 1) A set of N players, each choosing a pure strategy, $z_i \square \square$
- 2) A set of N payoff functions hi(z)
- 3) z is a Nash equilibrium iff for all players i, for all z'_i , $h_i(z'_i, z(i)) \le h_i(z_i, z(i))$

Player 1's move Example: Prisoner's dilemma payoff table $(h_1(z), h_2(z))$ (2, 2) (10, 0)Player 2's

(0, 10) (7, 7)move:

• Problem:

Some games have no Nash equilbrium

- Solution:
 - i) Players take mixed strategies $P_i(z_i)$;
 - ii) $\prod_i P_i(z_i)$ a Nash equilibrium iff for all players i, no change to $P_i(z_i)$ will increase $[dz h_i(z)] \prod_i P_i(z_i)$

```
... gee, a product distribution ...
```

• Nash used Brouwer's fixed point theorem to prove always exists a mixed strategy Nash equilibrium

```
... gee, "Brouwer" is the name of a rule for setting product distributions . . .
```

- Unresolved problems:
 - 1) Finding Nash equilibria is a (hard) multi-criteria optimization problem
 - 2) In real world, never at a Nash equilibrium, due to limited computational power, if nothing else.

Bounded rationality

- Attempts to date to solve (2) are just more elaborate models of (human) players
 - Underlying problem is arbitrariness of the models.

Alternative:

- 1) For now, take $\square = \square$ and define $g_i(x) = -h_i(\square(x))$
- 2) At Nash equilibrium, each qi minimizes

$$L_{i}(\mathbf{q}) = E_{q_{i}}(\mathbf{g}_{i} \mid \mathbf{q}_{(i)})$$

$$= \left[\mathbf{d}x \ \mathbf{g}_{i}(\mathbf{x}) \ \right]_{j} \mathbf{q}_{j}(\mathbf{x}_{j})$$

3) Allow broader class of Lagrangians. E.g., each q_i minimizes

$$L_{i}(q) = \square E_{q_{i}}(g_{i} | q_{(i)}) - S(q)$$

4) □ < is bounded rationality

- 1) S(q) can be set from first principles (e.g., using information theory)
- 2) S(q) can be set to enforce a particular model of rationality
- 3) Can also set the model of rationality by replacing the g_i term in L_i . E.g.,

$$g_i(x) = h_i([(x)) - [h_i([(x))]^2]$$

penalizes q_i for which the r.v. $h_i(\square(x))$ has large variance.

4) Alternativley, replacing g_i with

$$g_i(x) = \prod_j f_{i,j}(x)$$

is equivalent to having player i try to optimize several payoff functions at once

- 1) If S(q) has infinite derivatives at \square 's border, the optimal q for \square < is off that border and usually easier to find
- 2) If in addition $S(q) = \prod_i \operatorname{D} x_i S_i(q_i(x_i))$ and S_i is bounded below, minimizing $L_i(q)$ is conventional (full rationality) game theory just with a new payoff function,

$$f_i(x, q) = \prod g_i(x) - S_i(q_i(x_i)) / q_i(x_i)$$

So $-S_i(q_i(x_i)) / []q_i(x_i)$ is a preference ordering for (the difficulty of) the computation of $q_i(x_i)$

1) If $\square \neq \square$ every $x_i \square \square$ delineates a set of binding contracts among the players — a set of z — that coordinate i "offers":

2) The contract finally accepted — the value of z — is the intersection of the contract sets offered by all players

In addition, if $\square \neq \square$, the strategies of the players are no longer independent:

$$P(z_i, z_j) = \left[dx \right]_k q_k(x_k) \left[\left(\left[(x) - z_i \right] \right) \left[\left(\left[(x) - z_j \right] \right] \right]$$

- So player i's strategy choice affects the strategy choice of player j
- 1) Stochastic dependence, but not necessarily Bayesoptimality (as in correlated equilibria)
- 2) If z is interpreted as the final joint action in a multi-stage game, this gives Stackelberg games, signalling, etc.

1) In a team game, all \mathbf{g}_i are the same function, the world utility, \mathbf{G}

E.g.,
$$G(x) = \prod_i h_i(\prod(x))$$

- 2) For S(P) concave with infinite derivative at \square 's border, $L(P) = \square E_P(G(\square(x))) S(P)$ is a convex surface with a single global minimum:
 - One and only one solution
 - The solution is easy to find
- 3) This optimal G is not a product distribution in general, i.e., it couples the players, regardless of whether $\Box = \Box$

SAMPLING PROBABILITY DISTRIBUTIONS

• Say you want to evaluate a high-dimensional integral

where p(z) is a probability distribution

- A very common problem, e.g., in Bayesian analysis, materials science, physics, chemistry, etc.
- In Monte Carlo algorithms, one does this by repeatedly sampling p(z), and averaging the associated values of f(z)
- But how do you sample p(z)?

- 1) Perform a guided random walk through [
 - i) *Metropolis Hastings* (MH) algorithm the basis of simulated annealing
 - ii) Only exactly correct asymptotically
- 2) Approximate p(z) with a product distribution q and sample q directly
 - i) No wait for asymptotia
 - ii) There are two primary approximation error measures: forward KL and backward KL
 - iii) They give different Lagrangians, and so different algorithms for estimating optimal q
 - iv) Associated integration errors may be correctable with importance sampling

Hybrid combinations of (1) and (2):

- I) MH uses a distribution R to set the walk's initial z
- II) MH uses a proposal distribution Q after that:
 - i) Q gives the "exploration" point z^e found from the current point z^t
 - ii) z^t becomes z^e always if $p(z^e) > p(z^t)$
 - iii) else z^t becomes z^e with probability $p(z^e)Q(z^t) / p(z^t)Q(z^e)$

Either R and/or Q can be set to the q found via either inverse KL and/or forward KL

Hybrid combinations of (1) and (2):

- I) MH's walk gives a sample D of p;
 D can be used to estimate the q that best approximates p
 - Can be used for either the approximation error of inverse KL q or of forward KL q
 - Can then sample from this q (<u>not</u> the same as re-sampling from D)
- II) In *adaptive MH*, (I) is done repeatedly;
 - Each time the new q is used to modify Q
 - Crucial that the modification is Markovian

CORRECTIONS TO COIN ALGORITHMS

1) In optimization and sampling, calculating the optimal $\{q_i\}$ usually intractable.

The {q_i} must be set adaptively

2) In control, often don't even know what to calculate (can't accurately model the system)...

Agents — the $\{q_i\}$ — must be set adaptively

3) Control should be robust against failures/noise, and if distributed have few communication requirements ...

The $\{q_i\}$ must be set adaptively

- A collective is
 - i) A set of agents {i}, each of which
 - ii) tries to make the move x_i that maximizes an associated *private utility* function $g_i(x)$,
 - iii) together with a world utility G(x) measuring the performance of the overall system
- The probability distribution across G values is set by
 - i) how "aligned" each g_i is with G; does replacing $(x_i, x_{(i)}) \square (x'_i, x_{(i)})$ improve g_i iff it improve G?
 - ii) the size of the "signal" of the change in g_i under $(x_i, x_{(i)}) \begin{bmatrix} \vdots \\ (x_i, x_{(i)}) \end{bmatrix}$ in comparison to the "noise" of the change under $(x_i, x_{(i)}) \begin{bmatrix} \vdots \\ (x_i, x_{(i)}) \end{bmatrix}$

- In COllective INtellience (COIN) experiments, at each iteration the simplest common machine learning algorithm was used by each i to choose x_i :
 - i) For each $x_i \square \square$, estimate $g_i(x_i, x_{(i)})$ by averaging the g_i values in previous iterations in which $\square = x_i$
 - ii) To trade off "exploration vs. exploitation", choose among the \mathbf{x}_i according to a Boltzmann distribution over those estimated \mathbf{g}_i values

Product distribution theory provides an alternative perspective:

Rather than "trying to maximize g_i" by "trading off exploration and exploitation", the algorithms "try to find a bounded rational equilibrium"

- 1) Previous work based on a set of mathematical premises expected to hold for any learning algorithm
- 2) Using those can solve for the g_i of a particular form that are aligned with G and have best signal / noise:

$$AU_i(x) = G(x) - \left[dx'_i f(x'_i) G(x'_i, x_{(i)}) \right]$$

for a distribution f(.)

3) Usually arbitrarily chose f(.) to be uniform

Product distribution theory says what f(.) should be - uniform is not correct

- 1) Computer experiments compared $g_i = AU_i$ and the team game $g_i = G$
 - It was found that when they shared the same temperature, for some temperature ranges the team game outperformed $AU\,$
- 2) No understanding of how to avoid this without modifying AU's temperature

P.D. theory shows that this phenomenon is due to a biased estimator of the Boltzmann exponentials

- 1) A problem with AU_i is that it requires evaluating G for counter-factual \mathbf{x}_i values
- 2) A partial solution is to approximate $f(x_i) = \prod (x_i, CL_i)$ for some "clamping parameter" CL_i .
- 3) This defines the private utility WLU_i
- 4) Didn't know how to choose ${\rm CL}_{\rm i}$ in practice (intuition usually used)

P.D. theory says what CL_i should be to best approximate the correct AU

- 1) In computer experiments, there was an initial datagathering period in which all coordinates were set randomly
- 2) After that, learning algorithms were turned on a few at a time, to avoid too much disruption to the system
- 3) Didn't know how fast to turn on the algorithms, which to turn on when, etc.

P.D. theory shows this to be "mixed serial-parallel Brouwer updating", which can be optimized

 In Intelligent Coordinates (IC), the random exploration step of simulated annealing is replaced by "intelligent exploration":

Each variable's exploration value is set by the move of an associated learning algorithm of an underlying collective

P.D. theory shows that this is "adaptive Metropolis-Hastings with Brouwer updating" — and with the mistake that the keep/reject step does not reflect the proposal distribution

MATHEMATICAL FOUNDATIONS

- 1) We want to formalize how "surprised" you are if you observe a value s generated from a distribution P(s)
- 2) We want the surprise at seeing the IID pair (s, s') to equal the sum of the surprises for s and for s'
- 3) This means surprise(s) = $-\ln[P(s)]$
- 4) So expected surprise is the *Shannon entropy*

$$S(\mathbf{p}) = -\prod_{s} P(s) \ln[P(s)]$$

- Shannon entropy is concave over P
- Information in P is what's left over after surprise: -S(P)

Maxent: Given only constraints $\{E(\mathbf{g}_i) = 0\}$, choose minimal information P consistent with those constraints

- 1) We want to formalize "how far apart" P_1 and P_2 are
- 2) Generate m unordered data D by IID sampling P_1 , then misassigning to each $d_i \square D$ the probability $P_2(d_i)$
- 3) So you assign to all of D the *likelihood* $\prod_{i \mid m} P_2(d_i) C(D)$ where C(D) is the multinomial counting factor
- 4) Take log of this and divide by m, to get "likelihood rate". As m \square , with $S(P \parallel P') = -\square_s P(s) \ln[P'(s)]$, the rate is the *Kullback-Leibler* distance

$$|KL(P_1 \parallel P_2)| = |S(P_1 \parallel P_2) - S(P_1 \parallel P_1)|$$

• $KL(P_1 \parallel P_2)$ is never negative, and equals 0 iff $P_1 = P_2$

- We want to minimize a smooth function f(s □ n) subject to K constraints {g_i(s) = 0}
- Define $L(f, \{g_i\})(s) = f(s) + \prod_i \prod_i g_i(s)$
- L is the Lagrangian, and the $\{\Box\}$ the Lagrange parameters
- Set the partial derivatives of L with respect to both s and the Lagrange parameters to 0. Voila.

Example: Each $g_i(s)$ forces a different subset of s's components to sum to 1, i.e., to be a probability distribution.

• Convex f enforces non-negativity.

Brouwer's fixed point theorem:

- Let f(s) be a smooth map from V, into V, where V is a bounded convex connected subset of ⁿ
- Then there exists s such that s = f(s)
- 1) Both [] and []⁺ are bonded convex connected subsets of ⁿ So any smooth map over them has a fixed point
- 2) In particular, if the Lagrange minimization problem gives q = f(q) for a smooth f(.), then the problem has a solution
 - q [] f(q) is a Brouwer update of q

Problem: How to express arbitrary P(z) with a prod. dist.?

Solution:

□ = □ won't work ... so introduce more semi-coordinates

Example:

- 1) i) $z = (z_1, z_2)$
 - ii) $|\Box|$ possible values of each z_i
- 2) i) Have $\square_1 = \square_1$ the value of x_1 tells you z_1
 - ii) Have an extra \square for each possible value of z_1 ; x_{z_1} says what value z_2 has when $\square_1 = z_1$

Formally,

$$\begin{array}{lll} z_1 &=& \prod_1 (x_1, \, x_{z'_1}, \, x_{z''_1}, \, \ldots, \, x_{|\square_1|+1}) &=& x_1 \\ z_2 &=& \prod_2 (x_1, \, x_{z'_1}, \, x_{z''_1}, \, \ldots, \, x_{|\square_1|+1}) &=& x_{z_1} = \, x_{x_1} \end{array}$$

So

$$P(z_1) = P(x_1) = q_1(x_1)$$

 $P(z_2 | z_1) = P(x_{z_1} = z_2 | x_1 = z_1) = q_{z_1}(x_{z_1})$

Representation theorem: For any P(z), there exists a coordinate system [](.) and product distribution q such that q induces P

(GRAND) CANONICAL ENSEMBLE

- 1) Consider the Lagrangian $L_i(q) = \prod E_{q_i}(g_i \mid q_{(i)}) S(q)$ where S is Shannon entropy
- 2) This L_i minimizes $KL(\mathbf{q} \parallel \mathbf{p}^{\square \mathbf{g_i}})$, where $\mathbf{p}^{\square \mathbf{g_i}}$ is the exact Canonical ensemble
- 3) Its optimizing q_i is

$$\begin{bmatrix} q_i^g(x_i) & e^{\coprod g_i]_{i,q^{g_i}}(x_i)} \end{bmatrix}$$

where as before $[g_i]_{i,q}(x_i)$ is expected g_i conditioned on x_i , when other coordinates are distributed according to $q_{(i)}$

Each "particle" i coupled to its own distinct "heat bath", i.e., a mean field approximation

- 1) Now have each $g_i(x) = G(x) + \prod_i h_i(x)$, where the $\{h_i\}$ are all integer-valued functions
- 2) Then the *L*-minimizing P is the *Grand canonical ensemble*, and the minimizing q is a mean field approximation to it
 - x_i encodes the state of all particles of type i
 - h_i(x) is the chemical potential of particles of type i multiplied by their number — which is allowed to vary
- If we minimize $KL(p^{[lgi} || q)$ instead, we get the marginal,

$$q_i(x_i) = p^{\square g_i}(x_i)$$

- Unlike q_igi, this *inverse KL* q is independent of q(i)
- Can calculate it through importance sampling

MAXENT GAME THEORY

Consider bounded rational game theory with Lagrangians $L_i(q) = \prod E_{q_i}(g_i \mid q_{(i)}) - S(q)$ where S is Shannon entropy.

- 1) This Lagrangian arises if each player (chooses its mixed strategy to) maximize its entropy, subject to a provided expected payoff and the other players' mixed strategies.
- 2) Alternatively, it arises if each player maximizes its expected payoff, subject to a provided entropy.

All mathematical machinery of statistical physics can be applied to bounded rational game theory

- 1) Want a measure of "how rational" q_i is
 - Can't use $E_{q_i}(g_i)$ it depends on $q_{(i)}$
- 2) A rationality function $R(U, q_i)$ measures how peaked q_i is about $\mathop{argmin}_{x_i} U(x_i)$ for any function U
 - i) Rationality is the inverse temperature if \mathbf{q}_i is a Boltzmann distribution in U:

$$R(U, q_i) = [] \text{ if } q_i \quad exp\{-[]U\}$$

ii) Maximizing entropy subject to a rationality value gives a Boltzmann distribution at that temperature:

Of all q_i such that $R(U, q_i) = \Box^T$, the one with maximal entropy is $q_i = exp\{-\Box^T U\}$

3) We are interested in $U(x_i)$ that measure expected payoff to i if it makes move x_i . So for any function V(x), define

$$[V]_{i,q}(x_i) = E_{q_{(i)}}(V(x_i)) = [dx_{(i)}V(x_i, x_{(i)}) q_{(i)}(x_{(i)})]$$

- 4) $R([g_i]_{i,q}, q_i)$ is our measure of "how rational" q_i is.
- 5) Intuitively, it is the inverse temperature of the distribution over i's expected payoffs when it chooses moves according to $\mathbf{q_i}$.

• The optimal q, given rationalities $\{\prod_i^*\}$, is the minimizer over q and the $\{\prod_i^*\}$ of

$$L(\mathbf{q}, \square) = \square_i \square_i [R([\mathbf{g}_i]_{i,\mathbf{q}}, \mathbf{q}_i) - \square^*_i] - S(\mathbf{q})$$

• At any local minimum of $L(q, \square)$, for all i,

$$q_i = exp\{-\prod_{i=1}^{*}[g_i]_{i,q}\}$$

Proof: i) The Lagrange parameter term forces any local minimum to obey $R([g_i]_{i,a}, q_i) = \prod_{i=1}^{k}$ for all i.

ii) The q_i maximizing entropy while obeying $R([g_i]_{i,a}, q_i) = \prod_i^*$ is the Boltzmann distribution. QED

The maxent q is the minimal information q that is consistent with specified player rationalities

- Finding the Nash equilibria of a non-team game is typically viewed as a multi-criteria optimization problem
- Finding the bounded rational equilibria is a single-criteria optimization problem:

Minimize
$$L(q, \square)$$

• All solutions to this problem are off □'s border, and therefore easy to find

Example: Rationality is the inverse temperature of that Boltzmann distribution that best fits \mathbf{q}_i :

$$R(U, q_i) = \operatorname{argmin}_{\square} [KL(q_i \parallel exp{-\square U} / N(\square U))]$$

Must establish both requirements of a rationality function are met:

1) KL distance is non-negative, equalling zero only if its arguments are equal.

If $q_i = exp\{-\Box^{\square}U\} / N(\Box^{\square}U)\}$, taking $\Box = \Box^{\square}gives$ a KL distance of 0.

So the rationality of this q_i is 0, as required.

2) i) Writing it out,

$$R(\mathbf{U}, \mathbf{q_i}) = \operatorname{argmin}_{\square} [\square E_{\mathbf{q_i}} [\mathbf{U}(x_i)] + \ln(\mathbf{N}(\square \mathbf{U})]$$

ii) So
$$E_{q_i}[\mathrm{U}(x_i)] = -\partial_{\square} \ln(\mathrm{N}(\square \mathrm{U}))|_{\square = R(\mathrm{U}, \ q_i)}$$

- iii) So all q_i with rationality \prod^* have the same $E_{q_i}[U(x_i)]$
- iv) Therefore of all q_i with rationality \parallel^* , the one with the maximal entropy is the Boltzmann distribution with that inverse temperature. QED

In practice, replacing the rationality constraint term in L(q, []) with an expected utility constraint may be easier

The grand canonical ensemble can model bounded rational games in which the number of actors varies.

Intuition: Actors have "types", just like particles have properties

Example 1 (microeconomics):

- i) A set of bounded rational companies,
- ii) with payoff functions given by market valuations,
- iii) each of which must decide how many employees of various types to have.

Example 2 (evolutionary game theory):

- i) A set of species,
- ii) with payoff functions given by fractions of total resources they consume,
- iii) each of which must "decide" how many phenotypes of various types to express.

BROUWER UPDATING

- 1) To "set q_i adaptively" means iteratively trying to minimize $L(q_i, q_{(i)})$, given partial information about $q_{(i)}$.
- 2) As an example, consider again the Lagrangian

$$L_i(q) = \prod E_q(g_i(\prod(x))) - S(q)$$

3) Say
$$S(q) = \prod_i S_i(q_i)$$

So S is linear in the coordinates . . .

3) E.g., recall that since q is a product distribution, such linearity holds when S is the entropy,

$$S(q) = - \left[\operatorname{d} x \, q(x) \ln[q(x)] \right] = - \left[\operatorname{d} x_i \, q(x_i) \ln[q(x_i)] \right]$$

4) For any such linear S, L is linear:

$$L(\mathbf{q}) = \prod_{i} \left(\left[\mathbf{q}(x_i) \left[\mathbf{g}_i \right]_{i,q} (x_i) - S_i(\mathbf{q}_i) \right) \right)$$

where as before, $[g_i]_{i,q}(x_i)$ is expected g_i conditioned on x_i , when other coordinates are distributed according to $q_{(i)}$

- i) If we sample g_i (x) repeatedly for a particular x_i , we get an estimate of $[g_i]_{i,q}(x_i)$ ii) Say the adaptive algorithm setting q_i can always
 - evaluate the current $S_i(q_i)$

In this situation,

Each q_i can adaptively estimate its contribution to L(q)

6) Recall that at the q minimizing the entropic L(q),

$$q_i^{g_i}(x_i) = e^{\prod g_i}_{i,q^{g_i}}(x_i)$$

Each q_i can adaptively estimate its best-case form

Parallel Brouwer updating:

All coordinates i simultaneously replace

$$q_i(x_i) \ \square \ \frac{ \ \square [\hat{g}_i]_{i,q}(x_i) }{ \ N_{i,q}(\square[\hat{g}_i]_{i,q}) }$$

where $[\hat{g}_i]_{i,q}(.)$ is the estimated $[g_i]_{i,q}$, and $N_{i,q}(.)$ is the associated normalization constant (partition function).

- Akin to game theory's "ficticious play" strategy
- Slow convergence jumps all over \square . Can even worsen the approximation in any given update

Serial Brouwer updating:

One coordinate i at a time Brouwer updates

• Guaranteed to decrease L_{i} if estimate of $\left[\mathbf{g}_{i}\right]_{i,q}$ is accurate

Greedy serial Brouwer updating:

1) The Lagrangian gap of coordinate i is how much Li drops if only i updates:

$$\ln[N_{i,q}([g_i]_{i,q})] + E_{q_i}([g_i]_{i,q}) + S_i(q_i)$$

2) The coordinate with the largest gap updates

Mixed serial/greedy Brouwer updating:

Optimal COIN "turning on algorithms", i.e., optimal Stackelberg game, i.e., optimal organization chart

GRADIENT DESCENT

- 1) Say $S_i(q_i) = \prod_{x_i} S_{i,x_i}(q_i(x_i))$ (again, like with entropy).
- 2) Then the $q_i(x_i)$ component of $\square L(q)$, projected onto the space of allowed $q_i(x_i)$, is

$$\begin{array}{c} \left[\left[G\right]_{i,q}(x_i) + S_{i,x_i}(q_i(x_i)) / q_i(x_i) \right. \\ \left. - \right. \\ \left. \left. - \right. \\ \left[\left[\left[G\right]_{i,q}(x_i) + S_{i,x_i}(q_i(x_i)) / q_i(x_i)\right] \right) \end{array}$$

• The subtracted term ensures normalization

- 3) The $S_{i,x_i}(q_i(x_i)) / q_i(x_i)$ values are known by inspection
- 4) The $\square[G]_{i,q}(x_i)$ terms are estimated as in Brouwer updating

Each q_i can adaptively estimate how it should change under gradient descent over L(q)

5) Similarly the Hessian can readily be estimated (for Newton's method), etc.

- 1) Consider a team game. Let n_i be the samples of G used by coordinate i to decide how to change under gradient descent
- 2) The expected quadratic error in that descent step is

where the gradients are the true gradient of L for utility G and the estimated gradient for utility g_i

- 3) This is just a conventional bias² plus variance!
- 4) Of the \mathbf{g}_{i} guaranteed to be unbiased, the one with the smallest variance is

$$G(x) - [dx'_i G(x'_i, x_{(i)}) A(x'_i)]$$

where A(.) a distribution, $A(x'_i)$ being proportional to the reciprocal of the number of times x'_i occurred in n_i

ADAPTIVELY SOLVING FOR PROD. DIST.'S

Brouwer updating Gradient descent Importance sampling

Adaptive Metropolis-Hastings Sim. annealing / Prod. Distributions

POTPOURRI

 Coordinate transforms
 Continuous spaces
 Constrained optimization

 Black box optimization
 Time-extended systems
 Block look-ahead

Entropy bounds (un)supervised mach. learning Observing agents

TAKE-HOME MESSAGE:

Whenever you encounter a distribution P(z) that is difficult to deal with, try expanding it as a product distribution

 $\prod_i q_i(x_i)$

with associated Lagrangians.